The Avatar Project - Virtual Reality Intervention


Associate Professor Sylvia Gustin, Assistant Professor Zina Trost, Corey Shum, Associate Professor Mark Bolding, Professor Philip Siddall, Professor Scott Richards, Dr Nancy Briggs, Professor Victor Mark 

A person with spinal cord injury cannot feel touch. When touch information is forwarded from the periphery, e.g. the big toe, the brain represents a new category – discomplete spinal cord injury – which requires a new approach to rehabilitation. A new phase of this research program will study how to enhance these surviving sensory spinal nerve pathways with an intensive stimulation of the areas which represent touch in the brain to ultimately restore a perception of touch.

Together with Corey Shum and Associate Professor Zina Trost (University of Alabama, USA), Dr Gustin is developing a novel approach of Virtual Reality Walking Intervention (VRWalk) to enhance both the surviving sensory spinal nerve pathways and the touch signal in the brain in people with a discomplete spinal cord injury to finally restore the perception of touch.

The VRWalk intervention is facilitated by a commercially- available head-mounted display and wearable wrist sensors equipped with lightweight accelerometers. These detect participant arm movement during gait motion, translating arm swings into synchronised leg movement in the virtual world.

Participants’ arms and legs are represented from a first-person perspective in a fully immersive 360-degree virtual scene. System mechanisms function to optimally map participants’ actions to those of the virtual avatar, ensuring that virtual motion is directly related to participant intent (and moderating vestibular discomfort). The system dynamically adjusts sound and haptic feedback from virtual footfalls”, accounting for scene characteristics.

Gaming elements are central to the VRWalk design both to facilitate goal-directed activity through interaction with VR
world objectives and to engage active interest. Optimal kinematic configuration in the virtual environment and relationship between physical and virtual body were addressed as part of initial testing by spinal cord injury stakeholders.

Our primary aim is to examine whether a 20-day course of 30-minute VRWalk intervention offers clinically meaningful restoration of touch perception in people with discomplete spinal cord injury,” says Dr Gustin.

The research team will also use neuroimaging data, focusing specifically on changes in brain areas which represent touch and movement.

As a result of these developments, the research will provide the evidence base to develop new policies for diagnostic classification of spinal cord injuries, e.g. including discomplete injuries, not only in Australia but globally. This would be a game changer and provide a new future for close to 50 per cent of all people currently living with a complete spinal cord injury.